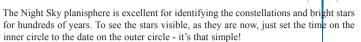
		Venus	Mars	Jupiter	Saturn	
	January	Mar 4	Jul 20	May 31	Mar 8	
2025	February	Mar 25	Jul 10	May 31	Mar 11	
	March	Mar 23	Jul 12	Jun 2	Mar 15	
	April	Mar 14	Jul 22	Jun 7	Mar 18	
	May	Mar 31	Aug 5	Jun 14	Mar 21	
	June	Apr 28	Aug 21	Jun 21	Mar 23	
	July	Jun 1	Sep 7	Jun 29	Mar 23	
	August	Jul 10	Sep 24	Jul 6	Mar 23	
	September	Aug 17	Oct 13	Jul 12	Mar 21	
	October	Sep 22	Nov 2	Jul 16	Mar 19	
	November	Oct 28	Nov 25	Jul 17	Mar 17	
	December	Dec 6	Dec 19	Jul 15	Mar 17	
2026	January	Jan 17	Jan 14	Jul 11	Mar 19	
	February	Feb 25	Feb 8	Jul 8	Mar 22	
	March	Apr 2	Mar 3	Jul 7	Mar 25	
	April	May 8	Mar 26	Jul 9	Mar 28	
	May	Jun 16	Apr 16	Jul 13	Apr 1	
	June	Jul 26	May 9	Jul 19	Apr 3	
20	July	Aug 29	May 31	Jul 26	Apr 4	
	August	Sep 27	Jun 23	Aug 2	Apr 4	
	September	Oct 18	Jul 14	Aug 9	Apr 3	
	October	Oct 20	Aug 2	Aug 14	Mar 31	
	November	Oct 10			Mar 30	
	December	Oct 27	Aug 29	Aug 19	Mar 29	
2027	January	Nov 26	Sep 2	Aug 18	Mar 30	
	February	Jan 2	Aug 26	Aug 14	Apr 1	
	March	Feb 9	Aug 16	Aug 10	Apr 4	
	April	Mar 17	Aug 15	Aug 9	Apr 8	
	May	Apr 21	Aug 23	Aug 11	Apr 12	
	June	May 28	Sep 5	Aug 15	Apr 14	
	July	Jul 8	Sep 20	Aug 20	Apr 16	
	August	Aug 17	Oct 7	Aug 26	Apr 17	
	September	Sep 21	Oct 26	Sep 2	Apr 16	
	October	Oct 27	Nov 17	Sep 8	Apr 14	
	November	Dec 5	Dec 11	Sep 13	Apr 12	
	December	Jan 16	Jan 5	Sep 16	Apr 10	


T 1/

Mercury - Dates to View in the Morning and Evening Sky

Year	Morning Sky						Evening Sky									
2021	Mar	6	Jul	5	Oct	25			Jan	24	May	17	Sep	14		
2022	Feb	17	Jun	17	Oct	9			Jan	7	Apr	29	Aug	28	Dec	22
2023	Jan	30	May	29	Sep	22			Apr	12	Aug	10	Dec	5		
2024	Jan	13	May	10	Sep	5	Dec	25	Mar	25	Jul	22	Nov	16		
2025	Apr	22	Aug	19	Dec	8			Mar	8	Jul	4	Oct	30		
2026	Apr	4	Aug	2	Nov	21			Feb	20	Jun	16	Oct	12		
2027	Mar	17	Jul	16	Nov	4			Feb	3	May	28	Sep	25		

Quasar Publishing's

PLANET FINDER 2021 – 2027

The Sun, Moon and planets, cannot be included as they move across the sky at different speeds and their positions change with respect to the stars. The planisphere can nevertheless show you how to find the brighter planets, with the unaided eye, by the addition of a simple table.

As the Earth revolves around the Sun, once a year, it appears to follow a path through the stars, called the ecliptic. It is only an apparent movement because the Sun is stationary and we are moving. The ecliptic is shown as a dashed line on the planisphere. During the year the Sun follows the ecliptic through the constellations of the Zodiac (and Ophiuchus). It is furthest South in the sky in December (in the constellation of Sagittarius) and furthest North in June.

The Sun Which constellation is the Sun in today? Turn the inner disc until today's date is towards the top of the planisphere. Draw a line from this date towards the centre of the planisphere and the Sun is where you cross the ecliptic. For example, on August 22 the Sun lies in Leo very close to the bright star Regulus.

Finding the Planets It is fortunate for us that the solar system is very flat and the planets lie very close to the plane in which the Earth orbits the Sun. Like the Sun they follow the line of the ecliptic (within a few millimetres on the planisphere). To find the planets we use a similar method to that for the Sun. This time the dates around the edge of the planisphere are used as a convenient reference pointer to the planets and for our purpose no longer represent a true date.

The two tables allow you to find the five brightest planets during the years 2021 to 2027. The main table consists of five columns. The first column is the month and year you are observing. To the right there is one column for each planet giving reference points around the edge of the disc. These references have been calculated for the middle of each month. Mercury is covered in the second table, see over.

Example of finding the Planets You plan to observe on 15 February 2027. From the main table the reference point given for Mars is *Aug 26*. Rotate the inner disc until this point is near the top of the planisphere (see diagram). This will ensure the position for Mars is visible in the main window. Draw an imaginary line from *August 26* towards the centre of the disc. The planet is close to where this line crosses the ecliptic (the dashed line), in Leo, near to Regulus. Rotate the disc until this point, near Regulus, just touches the eastern horizon. You will see that February 15 is now located a little before the 7 pm mark. This tells you that Mars will rise around that time and will be visible for

Saturn	Jupiter	Mars	snuəA		
Jan 25	72 nst	IS 1qA	Dec 28	January	
Jan 28	Feb 4	√ ysM	Feb 6	Еергиату	
Feb 1	Feb 11	May 26	Mar 15	Магећ	
Feb 3	Feb 17	si unt	02 1qA	IinqA	
Feb 4	Feb 21	S Int	May 28	May	
Feb 4	Feb 23	32 Iut	8 Int	June	2021
Feb 2	Feb 22	41 guA	01 guA	July	2
15 nst	Feb 19	Sep 1	61 dəS	tsuguA	
Jan 29	Feb 13	Sep 20	Oct 22	September	
San 28 Og nel	Feb 15	Oct 28	22 VOV	October	
Jan 30 Feb 1	Feb 15 Feb 18	Oct 28 Nov 18	Dec 29	November December	
Feb 4	Feb 24	Dec 12	S nat	January	
Feb 8	Mar 3	S nat	c met	February	
11 do 11	Mar 10	Jan 29	0£ nst	March	
Feb 14	01 mm	Feb 22	E 18M	lingA	
61 dol	Mar 22	21 asM	c mr	May	
01 05 1 Feb 16	Mar 27	0 1qA	01 yeM	June	12
Feb 15	Mar 29	92 1qA	81 nut	ylut	2022
Feb 13	Mar 29	01 yaM	82 lut	tsuguA	
11 do 1	Mar 26	2 nut	Sep 3	September	
Feb 10	Mar 23	El unt	6 toO	October	
Feb 10	Mar 20	El nut	či voM	November	
Feb 12	Mar 21	I nut	Dec 27	December	
Feb 15	Mar 24	May 26	9 qə <u>4</u>	January	
Feb 18	Mar 29	Z nul	41 18M	February	
Feb 22	ζ iqΑ	si nut	81 rqA	March	
Feb 25	II 1qA	2 Int	May 24	lindA	
Feb 27	81 rqA	12 lut	I lut	May	
Feb 28	\$2.1qA	8 guA	2 guA	annc	3
Feb 27	0£ 1qA	92 guA	61 guA	ylut	2023
Feb 26	£ yaM	Sep 13	8 guA	tsuguA	
Feb 23	4 yeM	I toO	ĉ guΑ	September	
Feb 22	I ysM	Oct 20	72 guA	October	
Feb 22	72 rqA	01 voV	Sep 27	November	
Feb 23	42 rqA	Dec 3	1£ 15O	December	
Feb 25	42 rqA	Dec 28	Dec 9	January	
I 1sM	72 rqA	Jan 22	81 nst	February	
4 rsM	May 2	Feb 16	Feb 26	March	
8 raM	9 yaM	01 1sM	2 rqA	linqA	
01 1sM	May 16	I 1qA	May 8	May	
II 1sM	May 23	Apr 23	∠լ unr	annc	2024
II 1sM	May 30	May 15	82 IuU	Yint	2(
Mar 10	s unt	9 ung	geb 3	1suguA	
8 asM	6 unf	97 ung	8 toO	September	
Mar 6	01 nut	41 Iut	El vov	October	
S TaM	8 nut	32 Iut	Dec 23	November	
Mar 6	₽ unt	67 Int	l & nst	December	

the rest of the evening.

Also, on this date, the Jupiter reference point is Aug. 14. The disc shows the planet nearby, in Leo, rising about 45 minutes before Mars. If you wish to look at Saturn, again, checking the table, the reference point for Saturn is Apv. I. When this point is on the eastern horizon, it does not show a time for Feb 15 as it is in daylight. If you move the point to the western side, it will show the setting time of about 9 pm.

When rotating the planisphere to the reference point (as per table) you may need to turn the planisphere over to find the ecliptic.

Finding Mercury The inner most world of our Solar System moves quickly and stays close to the Solar System moves quickly and stays close to the Sun, most of the time visible only during twilight. Since Mercury is never greater than 28° from the Sun it is rarely seen in a truly dark sky. This makes finding Mercury more challenging. Meat the horizon in the bright twilight sky there will be few stars visible that can be identified by the planisphere. The Mercury table gives the dates when the planet is furthest from the Sun (in degrees) in the western sturnbest from the Sun (in degrees) in the western is furthest from the Sun (in degrees) in the western sevening twilight or eastern dawn sky. The maximum evening twilight or eastern dawn sky. The maximum

The Mercury table gives the dates when the planet is furthest from the Sun (in degrees) in the western evening twilight or eastern dawn sky. The maximum distance from the Sun varies and the time of the year can influence how high Mercury is for any particular return. In general, returns to the evening sky are best when they occur in September. Morning returns are most favourable in March. It is worthwhile looking for Mercury within one or two weeks of either side of the dates quoted, especially for the favourable of the dates quoted, especially for the favourable returns. On our nominated dates you should view the sky about half an hour before sunrise (morning the sky about half an hour before sunrise (morning

returns) or after sunset (evening returns).

VELA AI7 AYDYA · ATTER · HOTAUDE sningaH. AUGUST

Position of Mars on 72 February 2027

TEON

Times used are local standard time. For daylight saving you must add I hour.

For further information regarding these planispheres or our astronomy yearbooks, please contact: Quasar Publishing, PO Box 85, Georges Hall NSW 2198 www.quasarastronomy.com.au